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Lagrangian quantum theory III. Coordinate-free formulation 

F J Bloore and L Routh 
Department of Applied Mathematics and Theoretical Physics, The University, Liverpool 
L69 3BX, UK 

Received 9 April 1974 

Abstract We show that the Frtchet derivative, which we have previously used to formulate 
a quantum-mechanical version of Hamilton’s principle of stationary action, suffers from 
certain defects. The algebra of quantum observables is a quotient algebra of a free algebra 
of coordinate and momentum observables by its ideal generated by the canonical commuta- 
tion relations. A Frechet derivative S,, is well defined on the free algebra but passes to the 
quotient only if its associated vector field X is a parallel vector field. We show that one 
may avoid the apparently consequent restriction of the class of allowable variations in the 
action principle to parallel vectors by defining the variations directly on the quotient 
algebra. It is then not usually possible to use the notation of the Frdchet derivative. We 
set up a simpler, coordinate-free, formulation of quantum mechanics based on the Lie 
algebra of symmetric contravariant tensor fields on the configuration manifold of the 
system and re-express the principle of stationary action using this formalism. We find the 
same relation between Hamiltonian and Lagrangian as before, but a much larger class of 
allowable variations, namely those associated with any C” vector fields. 

1. Introduction 

In the first two papers of this series (Bloore et a1 1973, Bloore and Routh 1973, to be 
referred to as I and 11) we propose a calculus of variations which appeared appropriate 
for a non-Abelian algebra. It was based on the FrCchet derivative and was applied to 
discuss Hamilton’s principle in quantum mechanics. We worked in an arbitrary, but 
particular, coordinate system. This has a number of disadvantages. One must check 
the explicit covariance of one’s expressions under transformation of coordinates. The 
formulation will hold only for systems whose configuration manifolds admit a global 
coordinate system. Whereas classical dynamics is a local theory, describable using a 
patchwork of local coordinate systems, quantum dynamics is a global theory in that 
states cannot be constrained to have support only in a single coordinate patch, and 
also in that the algebraic properties of the quantum-mechanical observable which 
corresponds to a function on the configuration manifold depend on all the values of the 
function throughout its domain, and not just on the local behaviour. Thus when the 
configuration manifold does not possess a global coordinate system one is forced to 
formulate quantum mechanics in a coordinate-free way. Such a formulation is presented 
in § 3. It is incomplete because there are a number of unsolved problems. However, 
enough of the formulation exists to present and solve the problem posed in 11, namely 
the formulation of Hamilton’s principle for an arbitrary quantum-mechanical system. 
This is done in 9 4. 
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1830 F J Bloore and L Routh 

In the new formulation, the physical meaning of the coordinate and velocity observ- 
ables q' and 4' is clearer and the technical problems of evaluating commutators are 
much simplified and shortened. 

In tj 2 we present a critique of the usefulness of the Frechet derivative. The algebra 
of q and 4 is presented as the quotient of the free algebra over the complex numbers of 
polynomials in the q and cj by its ideal generated by the commutation relations. All 
Frechet derivatives are well defined derivations on the free algebra but only a few 'pass 
to the quotient' as derivations, ie preserve cosets under the equivalence relations 
defined by the commutation relations. Each path variation qi( t )  + qi(t) + E(t)Xi(q(t))  
for which the Hamiltonian action is presumed stationary corresponds to a vector field 
X on the configuration manifold. For Hamilton's principle fully to determine the 
motion of the system, there must be as many independent variations as the dimension 
(n) of the configuration manifold. If a variation is to specify a derivation on the quotient 
algebra then the corresponding vector field X must be parallel. However, if the con- 
figuration manifold admits n independent parallel vector fields then it must be flat! 
To avoid this crushing restriction, we show in tj 3 that in each coset of the free algebra 
there is one element in 'normal form' and we specify the variation as a coset map by 
defining it on this element. We thus obtain a well defined mapping on the quotient 
algebra, but not a derivation. Although this procedure may be carried out also in the 
coordinate-dependent formulation, it is much easier to express and to understand in the 
coordinate-free formulation. With these redefined variations we find that there is a 
Lagrangian whose action is stationary for variations corresponding to all vector fields, 
and not just the Killing fields we obtained in 11. 

2. Critique of the FrCchet derivative 

In this section we show that for a quantum-mechanical system, if: (i) the action is 
stationary with respect to sufficiently many variations that the corresponding Euler- 
Lagrange equations determine the motion of the system ; and (ii) these variations are 
derivations on the algebra of observables ; then the configuration space is flat. 

Any description of the Hamiltonian time dependence of quantum-mechanical 
observables (QMO) in terms of a principle of stationary action requires a calculus of 
variables on the algebra of these QMO. The non-commutativity of the observables with 
each other led us to introduce what we called in I1 a Frechet derivative on the free 
algebra W of polynomials in the QMO with complex coefficients. If the QMO corresponding 
to the coordinates and velocities of a system with n degrees of freedom are q ' ,  . . . , q". 
q l , .  . . ,g and f ( q ,  q)  and h(q, q )  are polynomials in the q' and $, then we define 

1 ($ h )  = JfflE& ; [ f ( q ' ,  . . . qi- l ,  q'+ch(q, q),  q'+ 1 . . . q", 41,. . .cy) 

-f(q' . . . q", 41.  * .  471. 
For example, 

For any h E 9, the map f~ (aflaq', h )  is a well defined derivation on the free algebra 
9. However, in quantum mechanics, the algebra of QMO is not free but has canonical 
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commutation relations. If the metric of the configuration space of the quantum- 
mechanical system is gij(q) then the commutation relations of the coordinate and 
velocity observables are 

[qi, 4'1 = 0, 
[q', 44 - igij(q) = 0, 

[#, $1 - ii{ Gy(q), d k }  = 0 

i , j =  1 ,  . . . ,  n 

where repeated indices are summed, 

r is the Christoffel symbol, and the curly brackets are anticommutators. 

(2.3) must be replaced by the equation 
Strictly speaking, if there is a linear term Ai(q)pi in the Hamiltonian, then equation 

where the semicolon denotes covariant differentiation. In this section we shall restrict 
ourselves to the case A = 0 for simplicity of exposition. 

By imposing the commutation relations (2.1H2.3) we identify certain polynomials, 
elements of the free algebra 93, with zero. We thus form equivalence classes of elements 
of W to get a smaller algebra 9l which is mathematically the quotient 99/9 of W by its 
two sided ideal 9 generated by the polynomials comprising the left-hand sides of 
equations (2.1H2.3) for i, j = 1 , .  . . , n. The condition for a derivation defined on W to 
induce a well defined derivation on the quotient 93/9 is that it annuls 9, ie the derivation 
must annihilate all the left-hand sides of equations (2.1H2.3). Such a derivation is said 
to 'pass to the quotient'. We now consider what variations are required in a formulation 
of the problem of the calculus of variations, and whether they are well defined derivations 
on the quotient algebra. 

The action integral between times to  and t l  for a Lagrangian L(q, 4 )  is the integral 

Suppose that At) is some infinitesimal c-number function of time and Xi(&)), 
i = 1 , .  . . , n are some functions of the q.  In I1 we considered the variation dCxL in the 
Lagrangian due to the variations qi(t) + qi(t)+ c(t)X'(q(t)), q' 4'+(cXi)' of the co- 
ordinates and velocities. The resulting change in Lagrangian is 

and we deduced a criterion for J;; 6,,L dt to vanish for all C2 functions c ( t )  which vanish 
at the end points t o ,  t ,  , in the form of the Euler-Lagrange equation 

6,L = "i",xi). dt aq' (2.5) 
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The question arises whether the derivation dCx is well defined on a. The conditions for 
this are that 

0 = d,x([q', q'l), (2.6) 
o = dSx([qi ,  4.4 - igij(q)) = [qi ,  I X ~  + r X j ]  + [cx', 4'3 - ig'j,,EX' 

(2.7) 

0 = dex( [# ,  $1 - ii{ Gij, $ } )  = idXi;j - XJ;i) + { Hr, qk} (2.8) 

- - i@i;j + xj;,), 

where 

Hi' - - gjlxi,kl - giIxJ kl +xi, I k  GU - X j , l ~ l i k  - XlGij k , l  - X',kGi{ 
- - l-ik(xo;i + x i ; o )  + g,(xd + x i ; o ) : i  - (i t) j ) .  

The symbol ( i  t) j) means that the terms in the same line must be repeated but with 
i and j interchanged. 

Here we have used the fact that equation (2.2) implies that 

[xi,dj] = i g j k x i  ,k and 8' = +{Xi ,k ,qk} .  

The comma denotes partial differentiation. 
The equation (2.6) is an identity but equations (2.7) and (2.8) are conditions on X .  

By setting E = 1 we see that dx is a well defined derivation on 2l so long as X obeys the 
Killing equation for a vector field, 

(2.9) xi;j + xi;, = 0. 

However, the equations (2.7) and (2.8) for arbitrary ~ ( t )  imply that X is a parallel vector 
field, ie 

xi;i = 0. 

Now to obtain an Euler-Lagrange equation of motion from a condition of stationary 
action, d,xW,o = 0 the function e@) must indeed be arbitrary. If SIX is to be a well 
defined derivation on the algebra a, we are thus restricted to variations X which are 
parallel vector fields. Each such allowable variation will lead to one Euler-Lagrange 
equation of motion. For the action principle to determine the full time-development 
of the system there need to exist n independent equations of motion and thus n independ- 
ent parallel vector fields. The only metric which has n independent parallel vector 
fields is the flat one, g'j = dij. 

A quick way to see this is to recall the definition (Hicks 1965, p 59) of the curvature 
tensor R in terms of vector fields, X, Y, 2, 

R ( X ,  Y ) Z  = DxDyZ- DyDxZ- D,x,y,Z 

and its property that iff, g, h are scalar fields then 

N f X ,  g Y ) ( W  = fghR(X,  Y ) Z .  
If (e,}, i = 1,. . . , n are independent parallel vector fields, then 

D,,ej = 0 

R ( X ,  Y ) Z  = R(X'e, ,  Yjej)(zkek) = X'YjzkR(e, ,  ej)ek = 0, 
and so 

that is to say, the curvature tensor vanishes. 
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The result we have proved is discouraging. It means that one cannot add the left- 
hand side of equation (2.3) to the Lagrangian and obtain the same Euler-Lagrange 
equation (2.5) by using the Frechet derivative unless the variation is a parallel vector 
field. One can see this directly from the Euler-Lagrange equation by defining the 
derivation Ax on a, 

When f = L, this is the quantity which appears in the right-hand side of the Euler- 
Lagrange equation (2.5). Now 

Ax([4i, 4'3 - ${ GLj, 4')) = i(Xi;j - XJ;i) .  

Thus the right-hand side of equation (2.5) is well defined on 9l only if 
xi;j- xj;i = 0. 

This equation, together with the Killing condition (2.9) that the left-hand side of equation 
(2.5) be well defined on a, tells us that the vector field X must be parallel. In I1 the 
difficulty was avoided by just taking the variation to be a Killing vector field and con- 
cluding that, in general, we could not add the left-hand side of equation (2.3) to the 
Lagrangian without changing the Euler-Lagrange equation. In practice, such a 
restriction presented no serious problems for the Lagrangian under consideration in 
I1 since we restricted the Lagrangian to have a symmetric quadratic term. Provided 
X is Killing, equation (2.2) can be used to modify the Lagrangian without changing 
the Euler-Lagrange equation and this was the essential requirement in 11. 

In the rest of this paper we present a modified formulation which avoids these 
restrictions and has several other advantages. It is coordinate free, so it holds also for 
systems whose configuration space does not possess a global coordinate system ; it 
makes clear the physical meaning of the operators q', 4' which we have used somewhat 
cavalierly in this section, and it provides shorter and more transparent versions of the 
long-winded formulae which plagued 11. The main theme of the modified version is 
that need not be a derivation defined on 58, but only a well defined map, given as a 
function of the (unique) normal form of each element of 9l. The normal form of a general 
element of 9l is defined in the next section, but in particular the normal forms of the 
left-hand sides of equations (2.1H2.3) are all zero, and so is well-defined on 9l 
since 6,,(0) = 0. 

3. Quantum mechanics on manifolds 

We consider a dynamical system whose configuration space is a C" Riemannian mani- 
fold M .  We denote by T"M the space of real valued c" fully symmetric contravariant 
tensor fields of valence m, for m = 0 ,1 ,2 , .  . . . We shall associate with each such tensor 
T E T"M a quantum-mechanical observable Q( T) and postulate commutation relations 
between these. The direct sum @,T"M can be made into a Lie algebra d, where the 
Lie product of two tensor fields Si1*-'9q), Til-'qq) with valences 4s) = m, 4 T )  = n 
is the symmetric tensor of valence m + n - 1 given by Sommers (1973) : 

'. (3.1) 
Here the parentheses indicate that the enclosed indices are symmetrized, and the V, 

[s, q i 1  ... i m + , -  I = msdh...i,.- l v , , ~ i ~ . . . i ~  t n  - I )  -nTN1...in-l v,si .... i n +  ,.,- I 
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denotes the covariant derivative with respect to the local coordinate q'. If S n T is 
the tensor of valence m + n which is the symmetrized outer product of tensors S and T 
then 

(3.2) 

The Lie algebra of tensors defined by (3.1) is isomorphic to the Lie algebra offunctions 
on phase space for the following reason. If pi = gijq' is the momentum conjugate to qi 
and we denote 

[ S ,  T n  U ]  = [S ,  TI n U +  T n  [ S ,  U ] .  

S(q ,  p )  = Si1-im(q)pi, . . . pi,, (3.3) 

then the Poisson bracket of S(q ,  p )  and T(q, p )  is related to the Lie product [ S ,  TI of the 
tensor fields S and T by 

{ S ( q ,  PI, T(q, P,> = - [ S ,  TI(% PI. (3.4) 

We suppose that to each classical function (3.3) on phase space there is a correspond- 
ing quantum-mechanical observable Q(S), and that if c E R, 

P1 Q(S) = 0 * S = 0 

P2 Q(4 = cQ(S) 
P3 

P4 Q(S n = Q(s)Q(T) if u(S) = u(T) = 0 

P5 

P6 

Here g- is the inverse of the covariant metric tensor g. The rest of this section is 
devoted to a discussion of these postulates. 

Postulates P1-P6 contain and extend those of Segal(l960). It is not known whether 
P6 in the case U@) > 2 contradicts Pl-P5. The postulates Pl-P6 are consistent if 
u(S) < 2 in P6 and lead to the following results (Bloore and Underhill 1973, Bloore and 
Routh 1974). If 4 E TOM, X, Y E  T I M ,  S E T 'M,  then 

Q(S+ T )  = QP)+ Q(T) 

[Q(s), Q(V1 = - iQ([s, TI) 

[Qk- '), QV)l = - iQ([g- ', SI) 

if u(S)+ u(T) < 2 

for all S E d. 

Q(4W Q(4 n X) = ){Q(4), Q(X)), (3.5) 

Q(X n Y) = &Q(X)-)iQ(div X))(Q(Y)+)iQ(div Y))-&Q(A(X. Y))+(X c, Y), (3.6) 

Q(4S) = Q(4 n S )  = f{ Q(4), Q(S)} + aQ(div[S, 41 - 2 grad 4 . grad Tr S - (A4)  Tr S ) ,  (3.7) 

where A is the Laplacian and a dot between two vectors denotes a scalar product. 
The equation (3.7) follows from (3.5) and (3.6). We have not yet been able to express 
Q(X n Y n Z )  in terms of Q(X), Q( Y )  and Q(Z), in the form analogous to (3.6), 

(3.8) Q(X n Y n Z )  = Q(X)Q( Y)Q(Z) + lower-order terms 

but we conjecture that such an expression exists and is uniquely specified by Pl-P6, 
and that similar expressions hold for all higher tensors, 

= Q(X(l))Q(X(zJ . . . Q(X,,,) + lower-order terms. (3.9) 

We do not assume (3.9) in this paper, except when N = 2, where (3.6) has been proved. 
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By the algebra of Q M O ~  we mean the algebra over the complex numbers Q= of 
polynomials in the Q(S), for all SE T"M for all m, with the identifications given by 
PI-P6. It would be a consequence of (3.9) that any element x of 9I can be uniquely 
written in 'normal form', x = xR + ixl, where 

N 
(3.10) 

We shall need this result restricted to N = 2 ; that any element x of 2l of the form 

x = clQ(4)Q(T)+c2Q(X)Q(Y), 

has a unique normal form (3.10) with N = 2, 

c ~ E @ ; ~ E  ToM;X,  Y E  T I M ;  T E  T Z M  

x = Q(SLo))+Q(SL'))+Q(SLZ))+i(Q(S{o))+Q(S{'))+ Q(S1'))). 

We define the involution * on 2l by 

(cQ(S))* = CQ(s), (Q(s)Q(T))* = Q(T)Q(s) 

and say x is Hermitian if x = x*. 
The tensor S is called a Killing tensor if (Sommers 1973) 

[g-',S] = 0. 

If S and Tare Killing tensors, so are S n T and [S, Tj, and thus the Killing tensors form 
a sub-algebra X of d. In the absence of a potential the classical Hamiltonian is 
$gi'(q)pipj or $8- ' ( q ,  p )  in the notation of equation (3.3). Hamilton's equations imply that 

so that Killing tensors correspond in classical mechanics to constants of the free motion. 
We suppose that the commutation relations P5 and P6 are equal-time commutation 

relations and that the time development of the observables is according to the equation 

where 

H = ; g - ' + A +  V 

and A and V are prescribed vector and scalar fields. Evidently Q(S) is a conserved 
QMO of the free motion ( A  = V = 0) whenever S is Killing. As a particular case of (3.11) 
we note that for any scalar field 4, 

d 
-Q(4) = Q(grad 4)  + Q(A4). dt (3.12) 

If we assume that the manifold M admits a global coordinate system q l , .  . . , qn, then 
the coordinates qi are scalar fields on M and give basic vector fields ei = gij grad q j .  
The coordinate observables are Q(qi) and the corresponding conjugate momentum 
observables are Q(ei). The postulate P5 gives the commutation relations 

[Q(q'), Q ( d l  = [Q(ei), Q(ej)l = 0, [Q(ei), Q ( d 1  = - i&. 
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Using equations (3.5) and (3.12) we may write 

and obtain the commutation relations (2. I) ,  (2.2) and (2.3) for the coordinate and velocity 
observables. 

The postulate P5 cannot be strengthened to hold for all S ,  T without violating the 
other postulates. If, however, X is a Killing vector and S has valence 2 or less, then 
(Bloore and Routh 1974) 

(3.13) 

We conjecture that equation (3.13) will hold for tensors S of all valences so long as X is 
Killing but this cannot be proved until we have an explicit form for Q(X n Y n Z). 

The result (3.13) enables us to relate inner derivations on d and on %. For any 
vector field X on the manifold M ,  the mapping from d to d 

[Q(x), QWl = - iQ([x, SI). 

s H [X, SI 6,s 
is an (inner) derivation on d.  Also the mapping from % to % 

Q(s) ++ i[Q(x), Q(W SxQ(s) 
is an inner derivation on %. 

If u ( S )  d 1 then by P5, 

SxQ(S) = Q(Sxs). 
The equation (3.15) extends to u(S) = 2 so long as X is Killing. 

(3.14) 

(3.15) 

4. Lagrangian quantum theory 

In this section we pose and solve the same problem as the second paper in this series, 
but in the coordinate-free formalism developed in 43.  We consider a quantum- 
mechanical system which has a C" Riemannian configuration manifold M with metric 
tensor g. We suppose that the quantum-mechanical observables obey postulates 
Pl-P6, with the time dependence generated by the quantum Hamiltonian : 

Q(H) = Q(k- ' )+QV)+Q(V,  A E  T ' M ,  V E  TOM (4.1) 
that is, 

(4.2) 

We seek a (quadratic) quantum-mechanical Lagrangian, which will thus have the normal 
form 

Q(L) = Q(L'2')"(L''')+Q(L'o') 

where L(') E T ' M ,  and also a class of vector fields (X}, which satisfy Hamilton's principle 
of stationary action. That is to say, the quantum-mechanical action 
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is stationary with respect to variations of the form 

Q(L) -+ Q(L) + J,xQ(L) 

where c(t) is an arbitrary real C2 function oft which va 
8,, is defined as follows : 

8,,Q(L'O') = EQ(~,L'O'), 

ishes at to  a d 

1837 

(4.4) 

. The variation 

The curious right-hand sides of equations (4.5H4.7) are suggested by the coordinate- 
free versions of the variations used in classical mechanics. For example, the QMO Q(L"') 
corresponds to the classical function L'z"'(q)pipj which becomes 

when written in terms of velocities rather than momenta, as is required in the Lagrangian 
formulation. (The classical Hamiltonian which corresponds to (4.1) is 

(4.9) 

Under the variation 

q' + q' + € X i ,  q' + q' + (EX')' 

which is used in classical Lagrangian mechanics, the change in A is 

.xkL,,(q'-Ai)(q'-Aj)-  2EX~Li jA ' , , (q~-A' )+2Li , (~X'+c~ i ' ) (q ' -AJ)  

= €([X, L'2'1 + x . L'2' + L@' . X)'jq' - A')($ - A') 

- 2 4 x ,  A]  . L'z')J(qj- A') + 2 4 x  . L'Z'),(q'- A') 

= €([X, L'Z'] + x . L'2'+ L@' .w)'ip.p. I J  

- 2 4 x ,  A ]  . L'2')'Pj + 2 4 x  . L'2')'p'. (4.10) 

The right-hand side of (4.7) is the QMO which corresponds to (4.10). The equations 
(4.5) and (4.6) follow from the form of the classical variations in the same way. 

Having justified the covariant forms (4.9, (4.6), (4.7) for the variations we proceed 
to the problem of finding tensors L"', L"), L'O' such that the action (4.3) is stationary 
with respect to the variations (4.4). 
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We have 

0 = s,1' s^,,(Q(L(2)) + Q(L(')) + Q(L(O))) dt 

= 1; {eQ(N)+gQ(X. (2L(2 )+L(1) ) ) }  dt 

+ 1; $ { EQ(X . (2L(2) + I,(')))} dt (4.11) 

where 

N = [ X ,  L'2'+ L'" + L'O'] + w . L'2'+ L'2' . 8 + w . L(1'- [ X ,  A] . (2L'2' + L"'). 

The second term on the right-hand side of (4.11) vanishes since it is the value of the 
quantity in braces at the limits, and this is zero because E(tO) = dtl) = 0. The first term 
vanishes for all functions E(t) provided that 

(4.12) 

This is the Euler-Lagrange equation for the problem. The time derivative on the right- 
hand side of equation (4.12) is given by equation (4.2), from which we conclude 

Q(N)  = Q ( [ ~ g - ' + A + V , X . ( 2 L ' 2 ' + L ' ' ' ) ] ) .  (4.13) 

Using postulate P1 we drop the Q symbols in equation (4.13) and obtain an equation 

(U = 2) (4.14) 

(U = 1)  (4.15) 

(U = 0) (4.16) 
The equations (4.14H4.16) are the conditions on the tensor fields I,('), L") 

which appear in the Lagrangian and on the vector field X which ensure that the action 
(4.3) is stationary for the variations (4.4) given by (4344.7) .  It remains to find a solution 
of these equations. 

d 
dt 

Q(N) = - Q ( X .  (2L'"+L"')). 

between the tensor fields themselves. Equating tensors of equal valence we obtain 

[ g -  1, x . P'] = [ X ,  L'2']+ w . L'2' + L'2' . w 
[A, X . 2L'2'] + [*g- ', X . L'"] = [ X ,  L"'] - [ X ,  A] . 2L'2'+ 2. L'" 

[A, x . L"'] + [ v, 2 x .  P'] = [ X ,  L'O'] - [ X ,  A] . L"'. 

The equation (4.14) in coordinates reduces to 
x m ( ~ ( 2 ) m i ; J +  ~ ( 2 ) m j ; i  - ~ ( 2 ) i j ; m )  = 0. (4.17) 

We suppose that sufficient allowable variations X exist to span the tangent space at 
each point of the configuration manifold M .  Then equation (4.17) implies that 

~ ( 2 ) m i ; j  + L ( 2 ) m j ; i  - L(2) i j ;m  = 0. 

Interchanging m and i in this equation and adding the results gives 
~ ( 2 ) m i ; j  = 0 

and thus for indecomposable manifolds (Eisenhart 1923) 
L'2' = +Lg-l 
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where A is a constant. Substitution of this result into equation (4.15) yields 

x . (V x L"') = 0 

VXL'" = 0. 

whence 

Let us next suppose that M is simply connected. Then L") is the gradient of some scalar 
field 4 on M and 

d 
Q(L'") = QWad 4)  = xQ(4) - Q(A4) .  

[X,L'O'+AV-A+] = 0 

L'O' = -AV+ A d .  

The equation (4.16) now becomes 

which implies 

Thus, for an indecomposable simply-connected manifold and the time development 
given by the Hamiltonian (4.1) the quantum-mechanical Lagrangian has the form 

d 
Q(L) = A Q h -  - J') + zQ(4) 

where 4 is an arbitrary scalar field. The allowable variations for which the action 
integral of this Lagrangian are stationary are those given by equations (4.944.7) where 
the vector field X is quite arbitrary. 
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